The size control of fission yeast revisited.
نویسندگان
چکیده
An analysis was made of cell length and cycle time in time-lapse films of the fission yeast Schizosaccharomyces pombe using wild-type (WT) cells and those of various mutants. The more important conclusions about 'size controls' are: (1) there is a marker in G2 in WT cells provided by a rate change point (RCP) where the linear rate of length growth increases by approximately 30%. The period before this RCP is dependent on size and can be called a 'sizer'. The period after the RCP is nearly independent of size and can be called a 'timer'. The achievement of a critical threshold size is at or near the RCP which is on average at about 0.3 of the cycle (halfway through G2). This is much earlier than was previously believed. (2) The RCP is at about the time when H1 histone kinase activity and the B type cyclin cdc13 start to rise in preparation for mitosis. The RCP is also associated with other metabolic changes. (3) In wee1 mutants, the mitotic size control is replaced by a G1/S size control which is as strong as the mitotic control. As in WT cells, there is a sizer which precedes the RCP followed by a timer but the RCP is at about the G1/S boundary and has a larger increase (approximately 100%) in rate. (4) cdc25 is not an essential part of the size control at mitosis or at the G1/S boundary. (5) Three further situations have been examined in which the mitotic size control has been abolished. First, induction synchronisation by block and release of cdc2 and cdc10. In the largest oversize-cells which are produced, the RCP is pushed back to the beginning of the cycle. There is no sizer period but only a timer. Second, when both the antagonists wee1 and cdc25 are absent in the double mutant wee1-50 cdc25 delta. In this interesting situation there is apparently no mitotic size control and the cycle times are quantised. Third, in rum1 delta wee1-50 where the normal long G1 in wee1 is much reduced, there is probably no size control either in G1 or in G2 causing a continuous shortening of division length from cycle to cycle.
منابع مشابه
The size-wise nucleus: nuclear volume control in eukaryotes
Eukaryotic cells have an "awareness" of their volume and organellar volumes, and maintain a nuclear size that is proportional to the total cell size. New studies in budding and fission yeast have examined the relationship between cell and nuclear volumes. It was found that the size of the nucleus remains proportional to cell size in a wide range of genetic backgrounds and growth conditions that...
متن کاملModeling the control of DNA replication in fission yeast.
A central event in the eukaryotic cell cycle is the decision to commence DNA replication (S phase). Strict controls normally operate to prevent repeated rounds of DNA replication without intervening mitoses ("endoreplication") or initiation of mitosis before DNA is fully replicated ("mitotic catastrophe"). Some of the genetic interactions involved in these controls have recently been identified...
متن کاملRobust Cell Size Checkpoint from Spatiotemporal Positive Feedback Loop in Fission Yeast
Cells must maintain appropriate cell size during proliferation. Size control may be regulated by a size checkpoint that couples cell size to cell division. Biological experimental data suggests that the cell size is coupled to the cell cycle in two ways: the rates of protein synthesis and the cell polarity protein kinase Pom1 provide spatial information that is used to regulate mitosis inhibito...
متن کاملFission yeast receptor of activated C kinase (RACK1) ortholog Cpc2 regulates mitotic commitment through Wee1 kinase.
In the fission yeast Schizosaccharomyces pombe, Wee1-dependent inhibitory phosphorylation of the highly conserved Cdc2/Cdk1 kinase determines the mitotic onset when cells have reached a defined size. The receptor of activated C kinase (RACK1) is a scaffolding protein strongly conserved among eukaryotes which binds to other proteins to regulate multiple processes in mammalian cells, including th...
متن کاملChecking cell size in yeast.
To remain viable, cells have to coordinate cell growth with cell division. In yeast, this occurs at two control points: the boundaries between G1 and S phases, also known as Start, and between G2 and M phases. Theoretically, coordination can be achieved by independent regulation of growth and division, or by participation of surveillance mechanisms in which cell size feeds back into cell-cycle ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 109 ( Pt 12) شماره
صفحات -
تاریخ انتشار 1996